20CE3402-GEOTECHNICAL ENGINEERING

Offering branches				СЕ							Year: II			Sem: II	
Course Category:				Professional Core							Credits:		3		
Course Type				Theory							Lecture-Tutorial-		3-0-0		
	course rype.										Practical:		500		
											Continuous		30		
П			2	20BS1304- Applied Mechanics							Evaluation:				
Prerequisites:				Semest Evolution								End on:	70		
												arks: 100		00	
Course	Course Outcomes														
Upon successful completion of the course the student will be able to:															
CO1	1 Identify the soil and decide whether it is appropriate for construction or not											K2			
CO2	Desi	esign the porous medium of any hydraulic structure									K6				
CO3	Dete	Determine the long and short-term analyses to know the exact state of stress on the													
	soil													K3	
CO4	Estin	nate	the se	ttleme	nt of	the f	founda	tion b	ov und	lerstand	ing the	consol	idation		
	mech	nanism	of clar	v					5		0			K4	
	Estin	nate t	he sho	rt-tern	n and	long-te	erm an	alyses	and u	nderstar	nd how	to preve	ent soil	T7 4	
CO5	struc	structures from catastrophic failure													
Contribution of Course Outcomes towards achievement of Program Outcomes										1					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	2		1	1	1				1	2	1	
CO2	2	2	2	2		3	3	3				3	2	3	
CO3	3	3	3	3		2	2	2				2	3	2	
CO4	2	2	2	2		3	3	3				3	2	3	
CO5	2	2	2	2		3	3	3				3	2	3	
Avg.	2	2	2	2		3	3	3				3	2	3	
		1- Lo	OW				2-Me	dium				3-High			
Course Content															
	S	nil Pro	onertie	s: Ph	vsical	prope	rties o	of soil	– voi	d ratio	porosit	v deor	ee of		
	sa	turatio	on. wa	ter co	ntent.	modul	le wei	ghts.	specifi	c gravit	v - the	eir func	tional	CO1	
	re	lations	hips. 1	elative	e densi	itv. Inc	lian st	andard	l classi	fication	for fine	e graine	d and		
UNIT-	1 co	barse g	rained	soils f	or gen	eral en	gineer	ing pu	rposes.			0			
	S	Soil Structure, Clay Minerals, introduction of Clay Chemistry Determination and													
	Va	various indices – plasticity index, consistency index, liquidity index – uses and													
	ar	applications of consistency limits in soil engineering, activity ratio													
	S	Soil Hydraulics: Bernoulli's Principle and Equation, Darcy's law and its													
	liı	limitations, determination of coefficient of permeability, laboratory methods-													
	co	constant head and variable head permeameter tests, factors influencing coefficient													
UNIT	-2 of	of permeability, permeability of stratified soils, stress principle for saturated soils-												CO2	
	to	total, neutral and effective stresses, no flow, downward flow and upward flow													
	co	conditions, quick sand conditions, critical hydraulic gradient, piping failures in													
	da	dams founded on permeable formations													
	Consolidation: Oedometer Tests, e-p and e-log p curves – compression index,														
	coefficient of compressibility and coefficient of volume change, Terzaghi's														
	as	assumptions for one dimensional consolidation, equation and application,													
	co	coefficient of consolidation, degree of consolidation vs time, initial compression,													
UNIT	-3 pr	3 primary compression and secondary compression, normally consolidated, over													
	co	consolidated and under consolidated clayey deposits,													
	C	Compaction: Mechanism of compaction, factors affecting compaction, effect of													
1	compaction on engineering properties of soils, field compaction equipment							t and							
		compaction on engineering properties of soils, field compaction equipment and													

	Shear Strength of Soils: Stress at a point, Mohr circle of stress, Mohr-coulomb's									
UNIT-4	failure theory, shear tests - direct shear box, unconfined compression, tri-axial									
	compression, and field vane shear tests, shear parameters, types of shear tests in									
	the laboratory based on drainage conditions, shear strength of sands, critical void									
	ratio, thixotropy and dilatancy of sands.									
UNIT-5	Stress-Strain and Elastic Deformation: State of stress, Material failure theory,									
	Material Responses to Normal Loading and Unloading, Plane Strain Condition,									
	Axisymmetric Condition, Soderberg-GoodMan model, Boussinesq theory for the									
	determination of vertical stresses due to point loads									
Learning Resources										
		1. B.C. Punmia, Soil Mechanics and Foundations, (SI Modules), 16/e	Laxmi							
		Publications, Sixteenth edition (2017).								
Tort Do	al-a	2. Gopala Ranjan and A.S.R, Rao, Basic and Applied Soil Mechanics, 2/e, New								
Text Bo	OKS	Age International Publishers, Third edition 2016.								
		3. Dr.K.R.Arora, Soil Mechanics and Foundation Engineering, Standard								
		Publisher Dist, 2009.								
		1. C. Venkataramaiah, Geotechnical Engineering, New Age International,	2006.							
Reference Books		2. M. Braja Das, Principles of Geotechnical Engineering, Cengage Learning,								
		2013.	-							
		3. P. Donald, Coduto, Geotechnical Engineering, Prentice-Hall India, 2010.								
e-Resour	ces&	1. https://nptel.ac.in/courses/105/101/105101201/								
other digital material										